Skip to main content

Registry System

LazyRegistry

The blog of ppwwyyxx inspired LazyRegistry. To reduce the unnecessary imports, ExCore provides LazyRegistry, which store the mappings of class/function name to its qualname and dump the mappings to local. When config parsing, the necessary modules will be imported.

Rather than calling it a registry, it's more like providing a tagging feature. With the feature, ExCore can find all class/function and statically analysis them, then dump the results in local to support some editing features to config files, see config extension.

Features

Extra information

from excore import Registry

Models = Registry("Model", extra_field="is_backbone")


@Models.register(is_backbone=True)
class ResNet:
pass

from excore import Registry

Models = Registry("Model", extra_field="is_backbone")


@Models.register(is_backbone=True)
class ResNet:
pass

@Models.register(is_backbone=True)
class ResNet50:
pass

@Models.register(is_backbone=True)
class ResNet101:
pass

@Models.register(is_backbone=False)
class head:
pass


print(Models.module_table(select_info='is_backbone'))

print(Models.module_table(filter='**Res**'))

results:

  ╒═══════════╤═══════════════╕
│ Model │ is_backbone │
╞═══════════╪═══════════════╡
│ ResNet │ True │
├───────────┼───────────────┤
│ ResNet101 │ True │
├───────────┼───────────────┤
│ ResNet50 │ True │
├───────────┼───────────────┤
│ head │ False │
╘═══════════╧═══════════════╛

╒═══════════╕
│ Model │
╞═══════════╡
│ ResNet │
├───────────┤
│ ResNet101 │
├───────────┤
│ ResNet50 │
╘═══════════╛

Register all

from torch import optim
from excore import Registry

OPTIM = Registry("Optimizer")


def _get_modules(name: str, module) -> bool:
if name[0].isupper():
return True
return False


OPTIM.match(optim, _get_modules)
print(OPTIM)

results:

╒════════════╤════════════════════════════════════╕
│ NAME │ DIR │
╞════════════╪════════════════════════════════════╡
│ Adadelta │ torch.optim.adadelta.Adadelta │
├────────────┼────────────────────────────────────┤
│ Adagrad │ torch.optim.adagrad.Adagrad │
├────────────┼────────────────────────────────────┤
│ Adam │ torch.optim.adam.Adam │
├────────────┼────────────────────────────────────┤
│ AdamW │ torch.optim.adamw.AdamW │
├────────────┼────────────────────────────────────┤
│ SparseAdam │ torch.optim.sparse_adam.SparseAdam │
├────────────┼────────────────────────────────────┤
│ Adamax │ torch.optim.adamax.Adamax │
├────────────┼────────────────────────────────────┤
│ ASGD │ torch.optim.asgd.ASGD │
├────────────┼────────────────────────────────────┤
│ SGD │ torch.optim.sgd.SGD │
├────────────┼────────────────────────────────────┤
│ RAdam │ torch.optim.radam.RAdam │
├────────────┼────────────────────────────────────┤
│ Rprop │ torch.optim.rprop.Rprop │
├────────────┼────────────────────────────────────┤
│ RMSprop │ torch.optim.rmsprop.RMSprop │
├────────────┼────────────────────────────────────┤
│ Optimizer │ torch.optim.optimizer.Optimizer │
├────────────┼────────────────────────────────────┤
│ NAdam │ torch.optim.nadam.NAdam │
├────────────┼────────────────────────────────────┤
│ LBFGS │ torch.optim.lbfgs.LBFGS │
╘════════════╧════════════════════════════════════╛

All in one

Through Registry to find all registries. Make registries into a global one.

from excore import Registry

MODEL = Registry.get_registry("Model")

G = Registry.make_global()

✨Register module

Registry is able to not only register class or function, but also a python module, for example:

from excore import Registry
import torch

MODULE = Registry("module")
MODULE.register_module(torch)

Then you can use torch in config file:

[Model.ResNet]
$activation = "torch.nn.ReLU"
# or
!activation = "torch.nn.ReLU"